If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x-2=0
a = 2; b = -20; c = -2;
Δ = b2-4ac
Δ = -202-4·2·(-2)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{26}}{2*2}=\frac{20-4\sqrt{26}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{26}}{2*2}=\frac{20+4\sqrt{26}}{4} $
| 11t/30-t-6=1 | | -4x-5=-4(x-1) | | 58+5x-10=11x+2 | | 5-7(7-3x)=0 | | 4(y-1)=-40-8y | | 3.2x=2.4x+5.6 | | 12x+44=180 | | 3(x+4)=2(-2x+1) | | 5=0.4x-0.6x-3 | | -v+5+6v=1+3v+3 | | 3(2n+5)=5(17+4n) | | 4x+8=7,2+5x | | 5y^2+28y-49=0 | | X+x+10+50=180 | | 170=-9x-1 | | 3x+1/3=4x+5/4-8+x/6+2x+5/8 | | 3/4(x-3)+2/5(x-2)=5 | | P+2.5m+35=115 | | X^2-8+18x=0 | | 2(x-3)+7=4 | | 14x+6=12+11x | | -7x-2(3x+9)=99 | | 4x-28=-11 | | 1.6x+.3x=40+2.6x | | 1-(-9x)=170 | | 7/17y=-56/7 | | -3v^2+33v+36=0 | | 9-3x+15=12 | | 4x-50=x+50 | | -4(2x-5)=15 | | 2x+233=49 | | 2x/3+4=12 |